Cement and Concrete Reference Laboratory Proficiency Sample Program

Final Report
Reinforcing Bar Proficiency Samples
Number 15 and Number 16

September 2013
\square

To: Participants in the CCRL Reinforcing Bar Proficiency Sample Program

Subject: Final Report for Reinforcing Bar Proficiency Samples No. 15 and No. 16

Following is the report for the current pair of CCRL Reinforcing Bar Proficiency Samples which were distributed in July 2013. Sample No. 15 and Sample No. 16 were ASTM A615, Grade 60, \#7 bars. The two samples were different heats from the same mill.

This report consists of a statistical Summary of Results, a set of general Scatter Diagrams, and associated detailed information. The Table of Results with individualized information for laboratory can be downloaded at our website located at: http://www.ccrl.us/.

The CCRL Proficiency Sample Programs are intended for internal use by the laboratory as a tool to identify potential problems in laboratory procedures or test equipment and to initiate remedial actions. These programs are designed to complement the CCRL Laboratory Inspection Program as part of a total quality system. Care should be taken when using this program for any other purpose.

Additional samples of these two reinforcing bar and other CCRL samples are available for purchase. These samples may be useful for equipment verification, technician training, and research. Contact CCRL for availability and price.

It is presently anticipated that the next Reinforcing Bar Proficiency Samples will be distributed in July 2014.

Sincerely,

Robin K. Haupt
Supervisor, Proficiency Sample Programs
Cement and Concrete Reference Laboratory

To: Participants in the CCRL Reinforcing Bar Proficiency Sample Program

From: Robin K. Haupt, Supervisor, PSP

SUBJECT: Explanation of Final Report on Results of Tests on Reinforcing Bar Proficiency Samples No. 15 and No. 16

This letter and the material included with it constitute the final report and summary of results for the current pair of Reinforcing Bar Proficiency Samples, which were distributed in July 2013. This material includes a Table of Results for Individual laboratory data, a statistical Summary of Results, and a set of general scatter diagrams. Your unique laboratory number is displayed at the top of the Individual Table of Results.

An explanation of the program is contained in the paper: "Statistical Evaluation of Interlaboratory Cement Tests" by J. R. Crandall and R. L. Blaine View Document, and "Statistical Aspects of the Cement Testing Program" by W.J. Youden View Document, which can be found in Volume 59, Proceedings of the $62^{\text {nd }}$ Annual Meeting of the Society, June 25, 1959, American Society for Testing and Materials.

The test results for average spacing, and gap (more evident before outlying test result were removed) displayed a rather wide distribution which can be seen in the scatter diagrams. If your test results were eliminated or located in the "tails" of the distribution you should review your procedure for determining these results. In the case of bars with ribs, a gap is the width of the rib. For bars with two ribs a majority of laboratories reported the average of the two gaps or just one gap. Some laboratories reported a total of the two gaps.

Laboratory Ratings

Each laboratory receives an individualized Laboratory Ratings. Each line of the ratings shows the test title and the reporting unit in the first two columns. After that it lists in order, the laboratory's results for the odd and even numbered samples, overall averages for the odd and even numbered samples, and the laboratory's ratings for the odd and even samples.

The ratings for the individual laboratory were determined in the manner described by Crandall and Blaine using a rating scale of 1 to 5 instead of 0 to 4 . The ratings have no valid standing beyond showing the difference between the individual laboratory result and the average for a particular test. Laboratory Ratings are calculated using the unrounded values for average and standard deviation.

The following table details the relationship between the ratings and the averages.

Ratings

5
4
3
2
1

Range (Number of Standard Deviations)

Less than 1
1 to 1.5
1.5 to 2

2 to 2.5
Greater than 2.5

Number (Per 100)
of Laboratories achieving the rating ${ }^{1}$
Less than $1 \quad 69$
1 to $1.5 \quad 18$
1.5 to $2 \quad 9$
2 to 2.5 3
1

The sign of the rating merely shows whether the result reported was greater or less than the average obtained.

[^0]In cases where some laboratories' results are eliminated, averages, standard deviations, coefficients of variation, and the ratings of the other laboratories' results, are recalculated using the data remaining after the elimination. Since the laboratory ratings given are the results from this one series of tests, you need not attach too much significance to a single low rating, or pair of ratings, from this one series. A continuing tendency to get low ratings on several pairs of samples should lead a laboratory to consider the types of error, systematic and random, contribute to ratings that are low. Systematic error, which is indicated by low ratings with the same signs on each pair of samples, means a consistent error is occurring in equipment and/or test procedures. One indication of random error is low ratings on both samples with different signs.. Since systematic error occurs with more regularity, its cause is generally easier to find than the cause of random error.

Summary of Results

The Summary of Results provide the statistical summary for each test. Each line lists the test, the number of participants represented, the averages, standard deviations and coefficients of variations. When necessary the data from the test is represented in two lines, one line with all results reported, and then a second line with outlying results omitted. Sometimes two or more recalculations are required to eliminate all outliers from the test. In these cases, all of the laboratories omitted in previous recalculations are also omitted in subsequent ones. Results omitted are values that are more than three standard deviations from the mean of one or both samples. Elimination of these outlying results may little effect on the average, but may have a more pronounced effect on the standard deviation and coefficient of variation.

Scatter Diagrams

General scatter diagrams are supplied with this report. Crandall and Blaine describe the manner of preparing scatter diagrams, and their interpretation, in the paper published in the 1959 ASTM Proceedings.

Using the results received from each laboratory, a scatter diagram is generated for each test method by plotting the value for the odd numbered samples on the X, or horizontal axis, against the value for the even numbered samples on the Y, or vertical axis. Vertical and horizontal dashed lines, which divide the diagrams into four sections or quadrants, place the average values for the odd and even numbered samples, respectively. The first line of print under the diagram includes the test number, as given on the data sheet, the test title, and the number of data points on the diagrams. The number of plotted points may not agree with the total number of data pairs included in the analysis because a few points may be off the diagram, and some points may represent several data pairs, which are identical. Laboratories whose points are off the diagram will have a rating of ± 1 for that particular test.

As described in Crandall and Blaine, a tight circular pattern of points around the intersection of the median lines is the ideal situation. Stretching out of the pattern into the first (upper right) and third (lower left) quadrants, suggests some kind of bias, or tendency for laboratories to get high or low results on both samples. Examination of the scatter diagrams indicates strong evidence of bias on many tests.

CCRL PROFICIENCY SAMPLE PROGRAM

Reinforcing Bar Proficiency Samples No. 15 and No. 16
Final Report - September 17, 2013
SUMMARY OF RESULTS
Sample No. $15 \quad$ Sample No. 16

Test (unit)	\#Labs	Average	S.D.	C.V.	Average	S.D.	C.V.

Weight per Unit Length (lb/ft)

131	2.074	0.298	14.34	2.043	0.290	14.20
*120	2.065	0.004	0.19	2.038	0.006	0.31

* Labs Eliminated-17, 24, 29, 51, 231, 634, 896, 1019, 1189, 2420, 2960

Average Spacing (inch)

128	0.543	0.025	4.5	0.545	0.022	4.0
$* 117$	0.547	0.007	1.4	0.549	0.008	1.4

* Labs Eliminated - 27, 44, 51, 451, 474, 1019, 3021, 3648, 3659, 3788, 3790

Average Height (inch)

128	0.058	0.010	17.1	0.062	0.010	15.8
$* 126$	0.057	0.004	6.8	0.061	0.004	6.7

* Labs Eliminated - 1554, 1863

Gap (inch)

127	0.156	0.058	37	0.159	0.060	38
$* 110$	0.138	0.015	11	0.141	0.016	11

* Labs Eliminated - 20, 421, 474, 640, 920, 1026, 1044, 1539, 1540, 1554, 1785, 1863, 2115, 2164, 2857, 3280, 3659

Tensile Strength (psi)

137	108488	7391	6.8	106470	7287	6.8
$* 125$	108869	1261	1.2	107018	1088	1.0

* Labs Eliminated - 17, 26, 36, 42, 70, 447, 896, 1189, 1499, 1591, 2994, 3681

Yield Strength (psi)

137	71295	6431	9.0	69591	6124	8.8
$* 122$	71473	1050	1.5	69521	1041	1.5

* Labs Eliminated - 17, 26, 36, 42, 447, 896, 920, 1189, 1499, 1591, 1612, 2960, 2994, 3659, 3681

Elongation (percent)

137	16.0	1.5	9.1	16.4	1.5	9.2
$* 127$	16.2	0.8	4.8	16.6	0.7	4.2

* Labs Eliminated - 9, 27, 28, 29, 51, 1028, 1189, 2397, 3659, 3834

CCRL Proficiency Sample Program
Weight per Unit Length
REINFORCING BAR Samples No. 15 and No. 16

Test No. 1010 Weight per Unit Length 119 Points
Sample No. 15 Ave 2.065 S.D. 0.004 C.V. 0.19
Sample No. 16 Ave 2.038 S.D. 0.006 C.V. 0.31
Labs Eliminated: 17, 24, 29, 51, 231, 634, 896, 1019, 1189, 2420, 2960
Labs off Diagram: 451

CCRL Proficiency Sample Program Average Spacing
REINFORCING BAR Samples No. 15 and No. 16

Sample No. 15 Ave 0.547 S.D. 0.007 C.V. 1.4
Sample No. 16 Ave 0.549 S.D. 0.008 C.V. 1.4
Labs Eliminated: 27, 44, 51, 451, 474, 1019, 3021, 3648, 3659, 3788, 3790

CCRL Proficiency Sample Program Average Height
REINFORCING BAR Samples No. 15 and No. 16

Test No. 1030 Average Height 125 Points
Sample No. 15 Ave 0.057 S.D. 0.004 C.V. 6.8
Sample No. 16 Ave 0.061 S.D. 0.004 C.V. 6.7
Labs Eliminated: 1554, 1863
Labs off Diagram: 51

CCRL Proficiency Sample Program Gap

 REINFORCING BAR Samples No. 15 and No. 16

Test No. 1040 Gap 109 Points
Sample No. 15 Ave 0.138 S.D. 0.015 C.V. 11
Sample No. 16 Ave 0.141 S.D. 0.016 C.V. 11
Labs Eliminated: 20, 421, 474, 640, 920, 1026, 1044, 1539, 1540, 1554, 1785, 1863, 2115, 2164, 2857, 3280, 3659

Labs off Diagram: 37

CCRL Proficiency Sample Program Tensile Strength
 REINFORCING BAR Samples No. 15 and No. 16

Test No. 1050 Tensile Strength 122 Points
Sample No. 15 Ave 108869 S.D. 1261 C.V. 1.2
Sample No. 16 Ave 107018 S.D. 1088 C.V. 1.0
Labs Eliminated: 17, 26, 36, 42, 70, 447, 896, 1189, 1499, 1591, 2994, 3681
Labs off Diagram: 552, 920, 3659

CCRL Proficiency Sample Program Yield Strength
REINFORCING BAR Samples No. 15 and No. 16

Test No. 1060 Yield Strength 122 Points
Sample No. 15 Ave 71473 S.D. 1050 C.V. 1.5
Sample No. 16 Ave 69521 S.D. 1041 C.V. 1.5
Labs Eliminated: 17, 26, 36, 42, 447, 896, 920, 1189, 1499, 1591, 1612, 2960, 2994, 3659, 3681

CCRL Proficiency Sample Program Elongation

REINFORCING BAR Samples No. 15 and No. 16

Test No. 1070 Elongation 127 Points
Sample No. 15 Ave 16.2 S.D. 0.8 C.V. 4.8
Sample No. 16 Ave 16.6 S.D. 0.7 C.V. 4.2
Labs Eliminated: 9, 27, 28, 29, 51, 1028, 1189, 2397, 3659, 3834

[^0]: ${ }^{1}$ Youden, W.J., "Statistical Aspects of the Cement Testing Program", Proceedings of the American Society for testing and Materials Volume 59, 1959.

 Explanation of Final Report - page 1 of 2

